Where do performance
cliffs come from?

Tomas Vondra <tomas.vondra@enterprisedb.com>

O EDB

Goal(s) of this talk

e discuss one class of performance issues

o fairly common problem

o affects cost-based optimization (inherent issue)

e explain why this happens

e maybe give some mitigation hints

o but no promises, sorry :-(

What is a performance cliff?

e sudden (step) change of performance

e sudden = not proportional to change in "inputs"”

e example

©)

©)

©)

SELECT * FROM my_table WHERE column = $1
value "A" matches 1000 rows, query takes 1000 ms
value "B" matches 1050 rows, what duration is "expected"?

not much more than 1000ms? what if it takes 10000 ms?

Cost vs. Duration @ EDB

e most databases rely on cost estimates
o how much "resources" will the plan require (CPU, I/0)
o assumption: more resources => more time to execute
e costis..
o monotonic and continuous function
o ..withrespect to costing parameters

o ...selectivity of WHERE condition, number of groups, ...

Garbage in - garbage out

e selectivity estimates
e crucial input of the query planning process
e bogus estimate = anything can happen

e we assume selectivities are “good enough”

Example @ EDB

small selectivity difference => small cost difference => small duration difference

bitmapscan cost vs. duration

== cost == duration

5000000 60000
4000000
40000
3000000 —
[%2]
E
ﬁ c
9 S
© I
2000000 ;
20000
1000000
0 0
20.00% 40.00% 60.00% 80.00%

selectivity

Eh?! Where's the discontinuity? @ EDB

e before: performance cliff is a sudden change in performance

e just now: cost is nice, smooth, without steps, ...

e costis not timing, but should be correlated

e But why would the timing change in a step?

ldeas? @ EDB

e costisrelieson estimates - if wildly wrong, anything can happen
e various things are ultimately decided at runtime

o e.g.hashjoin/hashagg spilling, on-disk sort, ...

o on/off decision - one row triggers a lot of work
e we're dealing with multiple plans

o the whole point of why we calculate costs

o cost and duration may not "align" perfectly

Runtime decisions

Example: ... IN (list) @ EDB

CREATE TABLE test (a text);

INSERT INTO test
SELECT 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' || md5(random()::text)
FROM generate_series(1,10000000) s(i);

VACUUM ANALYZE test;

-- table has ~965MB

Example: ... IN (list) @ EDB

EXPLAIN (ANALYZE, TIMING OFF, COSTS OFF)

SELECT * FROM test WHERE a IN (
'aaaaaaaadaaaadaaaadaaaaldaaaaadaaaaaaaaaaac4dcasd238a0b923820dcc509a6f75849b ', --
'aadaaaadaaaaldaaaadaaaaldaaaaldaaaaaaaaaaacs8le728d9d4c2f636f067f89ccl14862c', --
'aadaaaaaaaaaaaadaadaadaadaaaaaaaaaaaaaaaaaaaecchc87e4b5ce2fe28308fd9f2a7baf3’, --
'aadaaaadaaaadaaaadaaaaldaaaaldaaaaaaaaaaraad’7ffe679a2f3e71d9181a67b7542122c', --
'aadaaaaadaaaaldaaaaldaaaaldaaaaldaaaaaaaaaaaeddadb7fbbce2345d7772b0674a318d5"', --
'aaaaaaadaaaaldaaaadaaaaldaaaaadaaaaaaaaaaale79091c5a880faf6fb5e6087eblb2dc’, --
'aaaaaaaaaaaadaadaadaadaadaadaadaaaaaaaaaaaaaaa8dfldedsSfceeal67a5a36dedd4bea2543", --
'aaaaaaadaaaadaaaadaaaalaaaaadaaaaaaaaaaac9ofof895+fb98ab9159f51fdo297e236d', --
'aadaaadaaaaaadaadadadadadaaaaaaaaaaaaaaaaasdsc48cce2e2d7fbdealafc51c7c6ad26’ --

W oONOUD WN R

)s

==> 1000 ms

Example: ... IN (list) @ EDB

EXPLAIN (ANALYZE, TIMING OFF, COSTS OFF)

SELECT * FROM test WHERE a IN (
'aadaaaaadaaaadaaaadaaaaldaaaadaaaaaaaaaaacdcasd238a0b923820dcc509a6f75849b ', --
'aaaaaaaadaaaaldaaaadaaaaldaaaaldaaaaaaaaaaacsd8le728d9d4c2f636f067f89ccl14862c', --
'aadaaaadaaaadaaaadaaaaldaaaaadaaaaaaaaaaaecchc87e4b5ce2fe28308fdof2a7baf3’', --
'aaaaaaaaaaaaadadadadadaaaaaaaaaaaaaaaaaa8’7ffe79a2f3e71d9181a67b7542122¢c', --
'aadaaaaadaaaaldaaaadaaaaldaaaaadaaaaaaaaaaaeddadb7fbbce2345d7772b0674a318d5"', --
'aadaaaaadaaaaldaaaadaaaaldaaaadaaaaaaaaaaale79091c5a880faf6fb5e6087eblb2dc', --
'aaaaaaadaaaaldaaaadaaaaldaaaadaaaaaaaaaaa8ftldedsfceealb67a5a36dedd4bea2543", --
'aaaaaaaaaaadadadadadaaaaaaaaaaaaaaaaaaacofefr895tbo98abo9159f51+do297e236d"' --

oo NOWUV AW DN PR

)5

==> 2000 ms (EH?! twice the timing of a longer IN list?)

Example: ... IN (list)

QUERY PLAN
Seq Scan on test (actual rows=0 loops=1)
Filter: (a = ANY ('{aaaaaaaaaaaaaaaaaaaaaa..., ...t ::text[]))
Rows Removed by Filter: 10000000
Planning Time: 0.092 ms
Execution Time: 1386.788 ms
(5 rows)

Example: ... IN (list)

e |ookupinhash table with >= 9 elements
o fewer elements => linear search
o but 9 is hard-coded threshold
e ideal threshold depends on cost of comparison
o specific to data-type and values (e.g. long prefix like here)

o impossible to know in advance / during execution

Other runtime decisions @ EDB

e query with in-memory vs. on-disk sort
e query with hashjoin/hashaggin memory vs. spilling to disk
e JIT can be quite expensive & useless

o enabled depending on total cost of a query

o ongoing effort to make more granular

Path switch

100M rows, random data @ EDB

CREATE TABLE test (a INT, b TEXT) WITH (fillfactor=50);

-- 59 rows/page, each page has the same (random) wvalue
INSERT INTO test SELECT a, b FROM (
SELECT a, b, generate series(1l,59) FROM (
SELECT 10 000 * random() a,
mdb (random () : :text) b
FROM generate series(l, 100 000 000/59)
) AS X
) AS y;

CREATE INDEX ON test (a);

cost: random / 100M rows (SELECT * FROM test WHERE id BETWEEN $1 AND $2)

== bitmapscan == indexsceln == segscan

100000000
|
10000000 I I
| | |
I | |
1000000 1 | |
1 | |
| | |
100000
0.01% 0.10% 1.0!% 10.00l’/ﬁ I
| | |
duration: random / 100M rows (SELECT * FROM test WHERE idIBETWEEN $1 AND $2) | |
| |
|

100000 r . I
== bitmapscan == |ndexsc1n == seqscan

10000

1000

100

10
0.01% 0.10% 10'% 10,0d%

selectivity

SELECT * FROM test WHERE id BETWEEN 1000 AND 1127;
QUERY PLAN

Bitmap Heap Scan on test (actual rows=1293280 loops=1)
Recheck Cond: ((id >= 1000) AND (id <=1127))
Heap Blocks: exact=21920
-> Bitmap Index Scan on test id idx (actual rows=1293280 loops=1)
Index Cond: ((id >= 1000) AND (id <= 1127))
Planning Time: 9.268 ms
Execution Time: 412.993 ms
(7 rows)

SELECT * FROM test WHERE id BETWEEN 1000 AND1128;
QUERY PLAN
Seqg Scan on test (actual rows=1301894 loops=1)
Filter: ((id >= 1000) AND (id <= 1128))
Rows Removed by Filter: 98698091
Planning Time: 8.289 ms
Execution Time: 10706.679 ms
(5 rows)

100M rows, sequential/correlated data @ EDB

CREATE TABLE test (a INT, b TEXT) WITH (fillfactor=50);

—-— monotonic growth, with a bit of random “fuzz”
INSERT INTO test
SELECT (i * 1.0 * 10 000) / 100 000 000 +
(10 000 * (random() - 0.5)) / 50,
mdb5 (random () : : text)
FROM generate series (1, 100 000 000) s(1);

CREATE INDEX ON test (a):;:

cost: correlated 100M rows (SELECT * FROM test WHERE id BETWEEN $1 AND $2)

10000000 | |
== bitmapscan == indexscan == segscan I
i I -
1000000 | |
I l
1 75%
100000 : : |
| | I
| | I
10000
| | I
| | I
1000 1 1 |
0.01% 0.10% 1.00% 10.00%
| | I
duration: correlated 100M rows (SELECT * FROM test WHERE id BETWEEN $1 !‘\ND $2) I l
1000000 1 1 |
== bitmapscan == indexscan == seqscan I I I
| | I
100000 | I
I l
| | I
10000 I I
l |
| | I
1000 I I I

]
0.01% 0.10% 1.00% 10.00%

select * from test where id between 1000 and8650;
QUERY PLAN

Seqg Scan on test (actual rows=76510346 loops=1)
Filter: ((id >= 1000) AND (id <= 8650))
Rows Removed by Filter: 23489654

Planning Time: 0.072 ms

Execution Time: 11905.432 ms

(5 rows)

select * from test where id between 1000 and8600;
QUERY PLAN
Index Scan using test id idx on test (actual rows=76009271 loops=1)
Index Cond: ((id >= 1000) AND (id <= 8600))
Planning Time: 8.398 ms
Execution Time: 130789.542 ms
(4 rows)

Mitigations?

Mitigations @ EDB

e really hard to fix (during planning)

e inherent to cost-based planning in general

e costingis approximation
o simplified model + incomplete data => imperfection
o G. Graefe: "choice is confusion" [1]

e S0, what options do you have?

Mitigations

e trytoensurethe "flip" does not trigger
o increase work_mem, for example
o it "only" moves the threshold ahead
e trytoreducetheimpactof the "flip"

o fast but ephemeral storage for temp files?

O

Mitigations

e bit of tuning the cost parameters?
o random_page_cost, cpu_tuple_cost, ...
o canthe cost/duration charts align better?
e don't bother to fine-tune the parameter values
o no parameter value is perfect for all queries
o the flip needs to happen "close enough"
e some important parameters do not affect costing

o e.g.effective_io_concurrency

Would be better ... @ EDB

e adaptive execution
o replace "apriori" decisions with exec time ones
o ideal: adaptive, smooth transition, not just on/off
o example: scan type selection vs. "Smooth Scan"

e might also help with estimation errors

e replacement for implementations of a logical node

o one for scans, another for joins, ...

Robustness / Research papers...

Smooth Scan: One Access Path to Rule Them All

R. Borovica, S. Idreos, A. Ailamaki, M. Zukowski, C. Fraser
https://stratos.seas.harvard.edu/files/stratos/files/smoothscan.pdf

A generalized join algorithm

G. Graefe
https://dl.gi.de/server/api/core/bitstreams/ce8e3fab-0Obac-45fc-ab6d4-66edaa52d574/content

Profile of G. Graefe

https://sigmodrecord.org/publications/sigmodRecord/2009/pdfs/05 Profiles Graefe.pdf

https://stratos.seas.harvard.edu/files/stratos/files/smoothscan.pdf
https://dl.gi.de/server/api/core/bitstreams/ce8e3fab-0bac-45fc-a6d4-66edaa52d574/content
https://sigmodrecord.org/publications/sigmodRecord/2009/pdfs/05_Profiles_Graefe.pdf

POSTGRESQL 16
ADMINISTRATION
COOKBOOK

Take part in EDB's prize draw
to win a brand new book
PostgreSQL 16 Administration Cookb

<{PC

PostgreSQL 16
Administration
Cookbook

SCAN THE QR CODE AND FILL IN THE FORM TO ENTER

enterprisedb.com

A
es P 9
o, V&J A

Gianni Ciolli Boriss Mejias Jimmy Angela
Vibhor Kumar Simaon Riggs

